
1

Advances in Win32 ASLR
Evasion

Justin Ferguson, May 2011
Distinguished IOActive Associate

Summary of Points 1/4

2

• Large emphasis has been placed on
randomizing pointers directly
•Lesser emphasis placed to ensure pointers
that point to them are non-deterministic
•This is dangerous in some conditions
• 32-bit Windows system calls accessed through

static pointers
• More generically take advantage of instances

where * is deterministic and ** is special
•*(special) allows meta-programming sorta

Summary of Points 2/4

3

• Process ASLR efficiency is not constant
•Some actions have deterministic effects
•Threads create a new stack, mapped files
occupy space
• Directly or indirectly controllable
• Leads to potential “side-channel–esque” attacks

•Programmers inherently inject order to
memory layout
• When did you last select random indexing to

operate on an object array?
• When did you last over-allocate and start from a

randomized base?

Summary of Points 3/4

4

• Secure systems must take an increasing
number of steps to prevent this order from
occurring
•When you plot the pointers returned from the
malloc (without free) in OpenBSD, you find...
• A pattern of 3-4 base addresses intermixed

between allocations
• No accurate relationship between knowledge of

order and how many subsequent allocations can
occur

•Windows returns deterministic incrementing
pointers

Summary of Points 4/4

5

• The resultant environment’s complexity
favors the attacker
• Taming the chaos becomes attackers goal
•32-bit Windows 7 and WoW64 albeit
differently
•Current protections include
• NX, ASLR, DEP, compilers that bitch at you for

everything, SafeSEH, SEHOP, the SDL and Mike
Howard comedy hour with cameos from David
the Grouch, banned APIs, mandatory static
analysis at check-in, variable reordering... THE
SDL TRAINING CARD GAME!

•Current protections not offered include

Lineage

6

• Personally, 2007-2008 timeframe
• Murmurs with credible evidence that establish
active usage pre-dating this time

• Updated because I didn’t google
•Chinese forums
•HDM in Metasploit, albeit not for this reason

• XCon 2010
•“Defeat Windows 7 browser memory
protection” Chen Xiabo & Xie Jun
•http://ivanlef0u.fr/repo/expl0it/
XCon2010_win7.pdf

Meta

7

• Current efficiency (syscalls)
•32-bit Windows is ideal
•WoW64 is not covered here
• Bit of a moving target
• Various non-system call function pointers to be

repurposed (22-May-2011)
•Win x64 is not covered here
• Bit of a moving target
• Fundamental aspect of technique no longer

applies
• General concepts apply, but broadly

Scene

8

• 32-bit Windows 7 patched as of 22-May-2011
•DEP, /GS, ASLR, SafeSEH
•Absence of non-randomized DLLs

• Specific focus on instances where stack pointer is
controlled
•Most obvious: stack overflows
•Less obvious: contextual situations, mov esp, lol

• One threat per network connection
•Not necessary, but not uncommon either
•Represents one aspect of an ideal attack state—gives “safe
from everyone else” memory

• Execution transfer requires **, can’t just use ret
•Everything’s C++ anyway—mov ecx, [ptr]—call [ecx+x]

AKA

9

typedef struct _X_t { void (*ptr)(void); […] } X_t;
T func(...) {

X_t xInstance;
char buf[SIZE];
[….]
read_one_from_network_until_crlf(&buf);
retval = xInstance.ptr();
if (0 > retval)
 errExitMsgToNetwork(“DANGER WILL ROBINSON: 0x%x\n”,
GetLastError());
[…]
}

int main(…)
{
 […]
 while (1) {
 fd = accept(…);
 CreateThread(…, &func, &fd, …);

Win32 Syscalls

10

• Call into kernel32, say VirtualProtect()
•Kernel32!VirtualProtect redirects into layered dlls

• API-MS-Win-Core-Memory-L1-1-0.dll
• Gets fixed up at runtime
• calls KERNELBASE!VirtualProtectEx

•KERNELBASE!VirtualProtectEx calls ntdll!ZwProtectVirtualMemory

0:003> u ntdll!ZwProtectVirtualMemory
ntdll!ZwProtectVirtualMemory:

77a15360 b8d7000000 mov eax,0D7h
77a15365 ba0003fe7f mov edx,offset SharedUserData!
SystemCallStub (7ffe0300)
77a1536a ff12 call dword ptr [edx]

dt ntdll!_KUSER_SHARED_DATA
0x7ffe0000

11

• _KUSER_SHARED_DATA exists here in all versions of
windows since XP
•x64 dt ntdll!_KUSER_SHARED_DATA
0x00000000`07ffe000

• Big structure, various aspects contextually
•+0x300 SystemCall
•+0x304 SystemCallReturn

• Pointers are NULL in WoW64 & x64
• 0x7ffe0000 mapping
•Read-only, 4096 bytes
•Previously famous for its executable code

poi(0x7ffe0300)

12

• 0:003> u poi(0x7ffe0300)
ntdll!KiFastSystemCall:
77a164f0 8bd4 mov edx,esp
77a164f2 0f34 sysenter
ntdll!KiFastSystemCallRet:
77a164f4 c3 ret

• Constraints for system call with parameters
•Control, at least partially eax
•esp points to our parameters

• Can be used without esp, just no parameters
•Xiabo’s example, MS08-078–
• heap spray 0x0a0a11c8 into eax
• 0x0a0a11c8 == 0x7ffe0300 – vptr offset used in call

Why so Serious

13

• Tradition dictates that we don’t use system
calls for windows exploits
• System call numbers are not set in stone like
the unices
• Not really considered an external interface
• Many are undocumented, all subject to
change
• Effective use is contextual & moderately non-
trivial

• We already have to do per service-pack, per-
language per-version et cetera exploits
• Syscall numbering relatively stable (compared
to say stack offsets between two SPs)

Go West

14

• What to do with a free system call?
•Ring 3 to Ring 0 Exploits

• Don’t forget all those win32k system calls!
• And that applications can have their own
• Win32k return values are variable, not NTSTATUS
• Many kernel memory leaks via eax

•Scavenge from existing deterministic data
• Surprising volume of data fit for use
• TIB is near-deterministic
• Awesomely contains pointers to the threads base, end and

current SEH record
• Awesomely is writeable

• NtProtectVirtualMemory(0xFFFFFFFF, 0x7ffdf008, 0x7ffdf010,
0x00000040)
• *Probably* makes a large-portion of the main thread’s stack

executable
• SEHOP/SafeSEH + SEH pointer re-ordering save the day here;

otherwise, we’d cause an exception and be done,

Near Determinism

15

• The TIB is for thread x is at…
•TIBs are laid out near-sequentially from 0x7ffdf000

• Skips over conflicting pre-existing mappings
• 4-bits of entropy, group into sets of 16

•In practice there are generally only 3 mappings that conflict
• AnsiCodePageData at 0x7ffb0000
• ReadOnlySharedMemoryBase at 0x7f6f0000
• PEB who will show up at a range from 0x7ffb0000 and

0x7ffdf0000
• Large volumes of threads will cause conflicts at other

mappings
• Sans those exceptions, the first thread sets @

0x7ffdf000-0x7ffdf000+16*sizeof(TIB), the second at
0x7ffdf000+17*sizeof(TIB) - …
•Past 0x7f6f0000 & until 0x7C100000, we can know the TIB
for sets of threads [x-x+16] at 100%

Thread Stack Layouts

16

• Each thread has it’s own stack & stack’s start towards low memory
•New stacks exist at a positive offset from the last (generally)
• Pre-thread stack allocation handled via NtSetInformationFile() opcode
0x29
• Walks user-address space returning first address free that is large enough
• Calls function that finds free memory a random number of times– derived

from system time

• The lower end of memory tends to also have
• Non-DLL based file mappings
• Executable image being executed

• As thread numbers increase…
•Layouts become more predictable
•Stack layouts become near-deterministic

• Trend becomes slightly more profound when thread stack’s grow
beyond DLL mappings
• Seems to have had recent changes– used to reduce entropy

on average to 3-4 bits, obscenely high-numbers of threads
seem to still come close

Thread Spraying

17

• Per MSDN, max stack for all threads is 32M
• Large chunks conditionally under attacker control

• For a given set of 16 threads..
•Their stack’s will fall loosely in the same range

• Id est 0x020XX000 through 0x02FXX000
• Except for those that don’t …
• 3 threads on average fall in 0x01XXXXXX or

0x03XXXXXX
• Thus a CreateThread() is in our favor

• Create groups of mirror threads created in sequential order
• Grouping allows us to create sections of semi-contiguous

memory
• Still contains gaps (end of guard to next stack ~1.5M)
• Contains guard pages between stacks (accesses =

extension)
• Changes make address prediction less likely– borks our

heap technique

CreateThread() as malloc()

18

• Lots of threads in transient states is bad
• What if thread exits?
• What is it’s current state?
• What about the other XX threads you created?
• Techniques with timing requirements are inherently unstable (generally)

• That’s okay!
• NtSuspendThread() – takes all static parameters
• NtWaitUserMessage() – takes no parameters

• May not be synonymous with NtSuspendThread()
• If there’s no WM_*’s to be delivered, it blocks
• No parameters makes it usable from the heap

• Iterate across thread groups TEBs calling NtVirtualProtect()
• CreateThread() -> NtSuspendThread()

• Allocates a stack whose location we can almost guess
• Creates a TIB record with a ** to the stack at an address we can guess
• Fixes it in place, thread X will never exist again, only thread X+y
• Can serve as a the basis for a malloc()/VirtualProtect() primitive

Guessing your thread number

19

• All fine and well, but..
• We have no way of knowing how many threads the application currently has
• Or do we?
• Microsoft was kind enough to never randomize IP IDs
• We can tell how many connections have occurred since our last
• Does not tell us what was connected to
• Serves as a boolean to know if our threads were grouped next to each other

• Slower servers obviously more advantageous
• Patience !
• Each probe can be a thread spray’n’lock
• Each probe can be anything that retrieves an IP packet
• Not strictly necessary, but improves first-guess accuracy
• Also, way more cool

Guessing your thread number

20

• Must model application’s thread usage during idle times
• Use as offset in calculations
• I have yet to encounter ‘random idle thread counts’

• Experience has shown that over-estimating number of pre-existing threads is
helpful
• More threads in larger groups allows us to divide in half and estimate our middle

• Favors server side attacks
• Things like Chrome’s sandbox help actually
• It’s okay, not all targets are sitting aggregating porn blogs & viagra emails
• Targeted client-side attacks are effective against organizations
• Generally not effective against individual targets

Finding your target’s TIB

21

• Now that we have groups of threads locked into place
• We need to take advantage of it
• We want to be able to accurately target VirtualProtect() to a given thread

• Let…
• S = sizeof(TIB)
• C = number of estimated threads
• N = the number of threads grouped together under your control

• Target thread sets TIB address = 0x7ffdf000 - 16*S – C*S – (N/2)*S
• Requisite that there are enough threads to cross the boundary at which the
conflicting PEB et al mappings effect no longer exists, thus 16*S

• Surprisingly stable & accurate

Egg hunting

22

• System calls are nice
• Tend to return 0xC0000005 and not crash
• In any case where the return value can be discerned remotely, the attacker
can probe memory

• Can be used in two manners—
• Ensure that guessed pointer is valid memory– dereference check
• Ensure that guessed pointer points to data we want– valid data check

• Many system calls are not usable for data checks– require pointers
• OBJECT_ATTRIBUTES & UNICODE_STRING are evil– contains pointer in structure
• ‘1 pointer rule’

• Permissions matter– some system calls require LOCAL_SYSTEM for success
• NtAddAtom() , NtFindAtom() combinations

• NtSetInformationFile() opcode 0x29 – minor data checks
• NtQueryVirtualMemory(), NtAllocateVirtualMemory() et cetera
• Several win32k system calls– less standardized, more usuable system calls

All together now!

23

• Use IP ID to determine how busy server is
• Group as many sequential threads together as reasonable /
possible

• Load threads with both shellcode and egg hunting tag(s) (id
est NtAddAtom() / NtFindAtom())
• All of these threads are to be suspended
• Determine TEB address, make stack executable for these
threads

• Use system calls to fine tune stack address guesses
• Which system calls to make are contextual– best ones
require LOCAL_SYSTEM
• Others work, but higher probability that data matched

• Return into shellcode on stack

Other techniques & work in

24

• PEB is highly guessable – approximately 1 in 12 chance give
or take
• PEB contains, among others, pointer to .text segment
• For contexts akin to:

lea reg32, [user+user]
call [reg32]

• Use this if you can! Far less complex!
• We can use system calls to probe memory

•0x7ffdf000, NtProtectVirtualMemory()
•Success? Not PEB, subtract sizeof(TIB), repeat
•Fail? PEB!

•Return into ROP
• Not 32-bit specific!

• If we can find a way to further reduce this, we broke x64
too!

Final thoughts

25

• ASLR effectiveness is non-constant!
• Sometimes can be manipulated by attackers to their advantage

• Many possibilities for side-channel attacks
• Correlations can sometimes be made between non-address space related
data

• Deterministic pointers to randomized data is potentially
dangerous
• Akin to not randomizing dyld

• More of this type of stuff is there to be found!
• x64 is the big target
• Win32 and WoW64 more or less broken

• Albeit contextually

• Questions?

